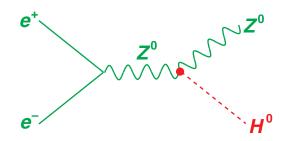
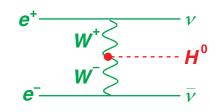
Linear Collider (not just ILC) Sensitivity Studies

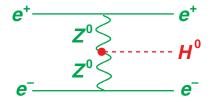
$e^{+}e^{-}$ (not just ILC) Sensitivity Studies

Outline


- (New) baselines for linear collider options
- Detectors
- W-pair production: $e^+e^- \rightarrow W^+W^-$ Anomalous triple gauge couplings (aTGC)
- Triboson production: $e^+e^- \rightarrow VVV$ Anomalous quartic gauge couplings (aQGC)
- Vector boson scattering: $e^+e^- \rightarrow \nu_e \nu_e W^+W^-$ Anomalous quartic gauge couplings (aQGC)
- Constraints from global Higgs fits
- Summary

Acknowledgements

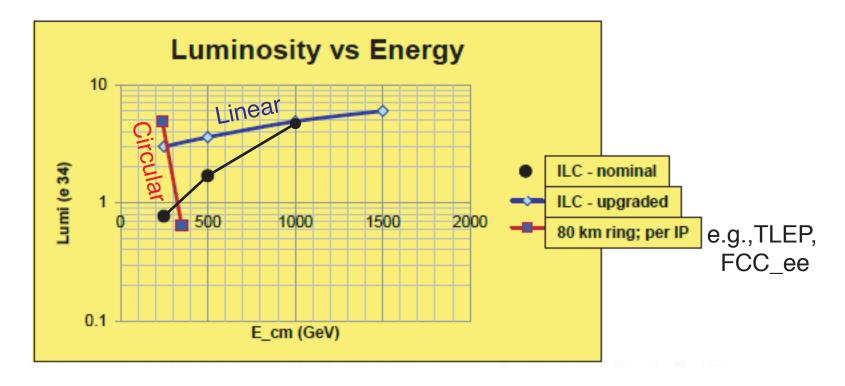

Reporting on the work of many others


- Snowmass EW Report, arXiv:1310.6708v1 [hep-ph]
- ILC Technical Design Report | Vol. 2: Physics, arXiv:1306.6352 [hep-ph]
- Exploring Quantum Physics at an ILC, arXiv:1307.3962 [hep-ph]
- CLIC Snowmass Report, arXiv:1307.5288v3 [hep-ex]
- CLIC Physics & Detectors: CDR, arXiv:1202.5940 [physics.ins-det]
- First Look at the Physics Case of TLEP, arXiv:1308.6176 [hep-ex]
- Physics Interplay of the LHC and the ILC, hep-ph/0410364
- Determination of New Electroweak Parameters
 at the ILC Sensitivity to New Physics, arXiv:hep-ph/0604048v1
- Study of Charged Current Triple Gauge Couplings at TESLA, LC-PHSM-2001-022
- Constraining anomalous Higgs interactions, arXiv:1207.1344v3 [hep-ph]

ILC Base Program

• "Higgs"strahlung

Fusion


Typical ILC program, 3 – 5 years each energy:

	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	300 fb	129 fb	57 fb	13 fb	6 fb	1 fb
$\sigma(e^+e^- \rightarrow vvH)$	18 fb	30 fb	75 fb	210 fb	309 fb	484 fb
Int. Luminosity	250 fb ⁻¹	350 fb ⁻¹	500 fb ⁻¹	1 ab-1	1.5 ab ⁻¹	2 ab ⁻¹
# ZH events	75,000	45,500	28,500	13,000	7,500	2,000
# vvH events	4,500	10,500	37,500	210,000	460,000	970,000

Polarized

ILC Luminosity Upgrade

 ILC base program frozen long ago for global design effort (GDE) and technical design report → necessarily conservative

 With minimal cost impacts, possible luminosity upgrade also considered for Snowmass studies:

$$\mathcal{L} = 0.75 \rightarrow 3.0 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

$$\int \mathcal{L} dt \, {}^{+\,\mathrm{optimistic}}_{-\,\mathrm{pessimistic}}$$

Benchmark Programs

...considered for Snowmass studies

pp machines:

	LHC	HL-LHC	HE-LHC	VLHC
$\sqrt{s} \text{ (TeV)}$	14	14	33	100
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	300	3000	3000	3000

Linear	e^+e^-	machines:
	0	

Luminosity Upgrade

ILC	500 ILC100	0 ILC1000-up	CLIC
$\sqrt{s} \; (\text{TeV}) \; 250/$	7500 $250/500/1$	000 250/500/1000	350/1400/3000
$\int \mathcal{L}dt \; (fb^{-1}) \; 250 +$	-500 $250+500+3$	1000 1150 + 1600 + 250	00 500+1500+2000

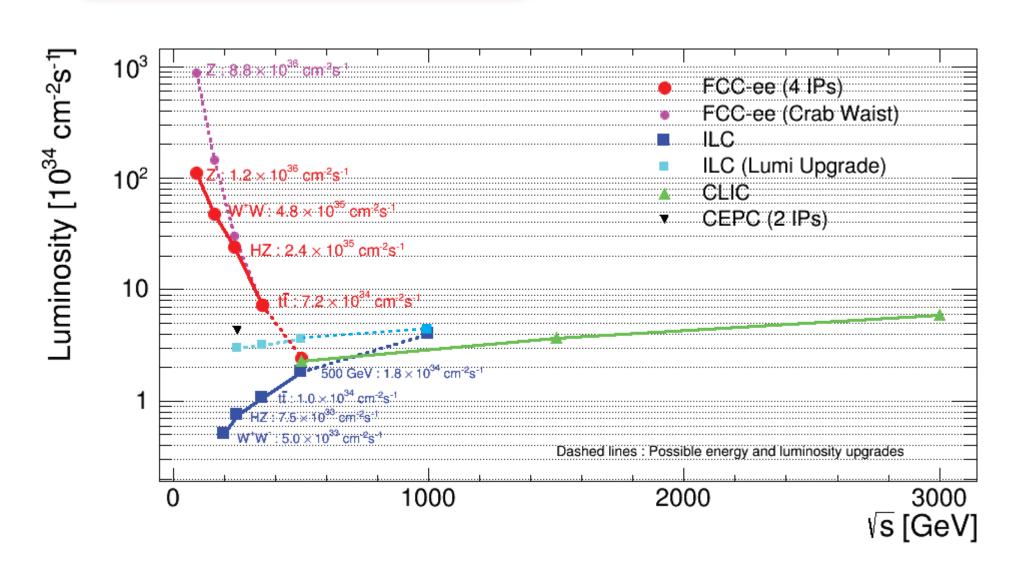
Run scenarios:

Considered for Higgs projections

Facility	HL-LHC	ILC	ILC(LumiUp)	CLIC
$\sqrt{s} \; (\mathrm{GeV})$	14,000	250/500/1000	250/500/1000	350/1400/3000
$\int \mathcal{L}dt \ (\text{fb}^{-1})$	3000/expt	250+500+1000	1150 + 1600 + 2500	500 + 1500 + 2000
$\int dt \ (10^7 \mathrm{s})$	6	3+3+3	(ILC 3+3+3) + 3+3+3	3.1+4+3.3

Benchmark Programs

...considered for Snowmass studies


pp machines:

	LHC	HL-LHC	HE-LHC	VLHC
$\sqrt{s} \text{ (TeV)}$	14	14	33	100
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	300	3000	3000	3000

Linear e^+e^-	[–] machines):	Luminosity Upgrade	
	ILC500	ILC1000	ILC1000-up	CLIC
$\sqrt{s} \; (\text{TeV})$	250/500	250/500/1000	250/500/1000	350/1400/3000
$\int \mathcal{L}dt \ (\mathrm{fb}^{-1})$	250+500	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000
Run scena	rios:	Results shown here baseline	Considered for Higgs projections	
Facility	HL-LHC	<i>program</i> ILC	ILC(LumiUp)	CLIC
$\sqrt{s} \; (\mathrm{GeV})$	14,000	250/500/1000	250/500/1000	350/1400/3000
$\int \mathcal{L}dt \ (\text{fb}^{-1})$	3000/expt	250+500+1000	1150 + 1600 + 2500	500 + 1500 + 2000
$\int dt \ (10^7 \mathrm{s})$	6	3+3+3	(ILC 3+3+3) + 3+3+3	3.1+4+3.3

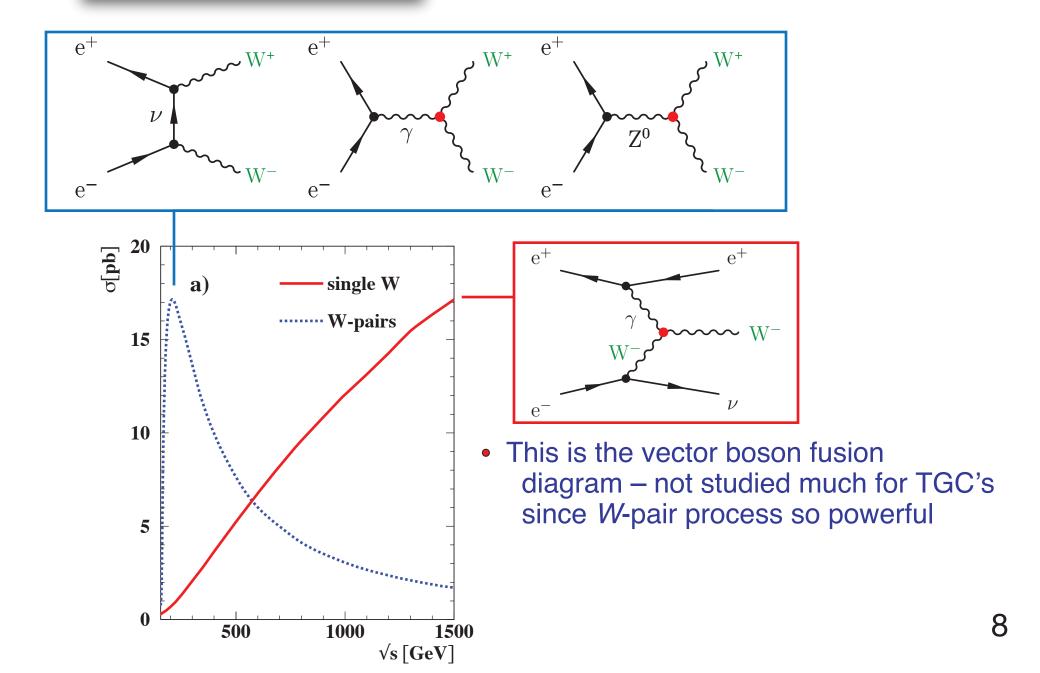
Benchmark Programs

...considered for Snowmass studies

Advantages of e^+e^-

- absence of parton distribution functions
 - known center of mass
- "democratic" in production of signal & background
 - far smaller QCD background
 - more electroweak, smaller theoretical uncertainties
- cleanliness of final state

(modulo, e.g., earlier comments regarding NLO corrections EW VBS)

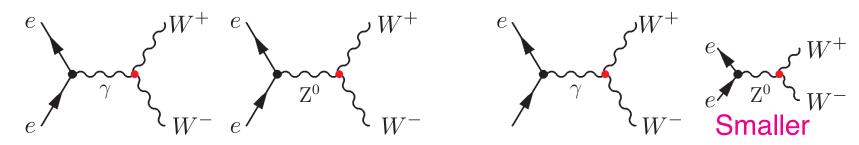

- no beam remnants
- beam structure, msec between bunch trains
 - essentially triggerless
 - advanced detector hardware & excellent resolutions
- • longitudinal polarization of beams, (V A) nature of W/Z

$$\rightarrow$$
 $\mathcal{P}(e^-) = 80 - 90\%, \, \mathcal{P}(e^+) = 30 - 60\%$

 $ightharpoonup e_L$ and e_R different multiplets, access completely

Making W's

...dominant W production processes at a linear collider


$$e^+e^- \rightarrow W^+W^-$$

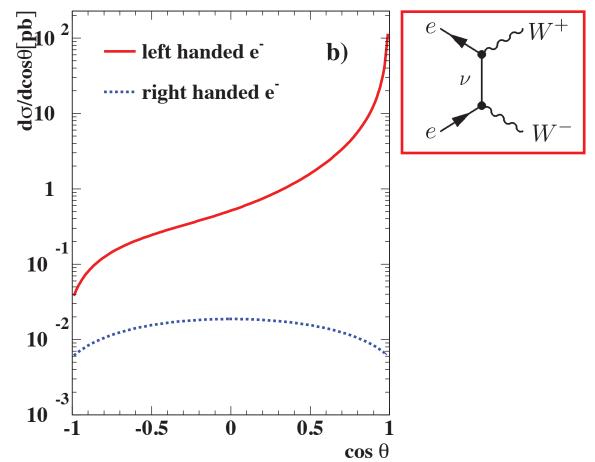
Production at linear colliders would be first time W^+W^- production measured with polarized beams

$$\sigma = \frac{1}{4}(1 - \mathcal{P}^+)(1 + \mathcal{P}^-)\sigma_R + \frac{1}{4}(1 + \mathcal{P}^+)(1 - \mathcal{P}^-)\sigma_L$$

Left-handed electrons

Right-handed electrons

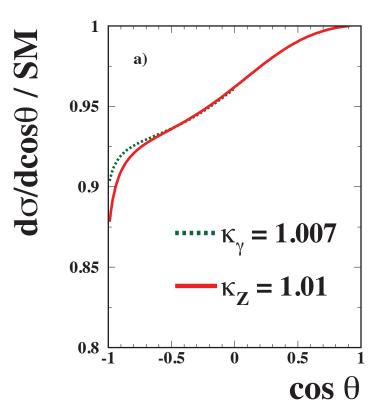
Disentangle the $WW\gamma$ and WWZ couplings

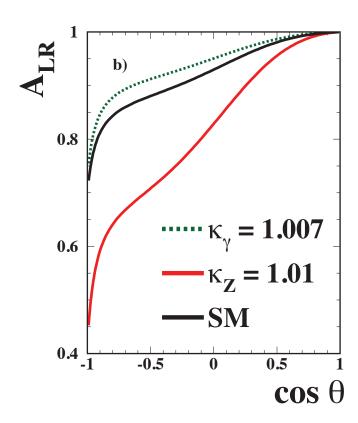


Turn off

$$e^+e^- \rightarrow W^+W^-$$

Production at linear colliders would be first time $\,W^+W^-\,$ production measured with polarized beams


$$\sigma = \frac{1}{4}(1 - \mathcal{P}^+)(1 + \mathcal{P}^-)\sigma_R + \frac{1}{4}(1 + \mathcal{P}^+)(1 - \mathcal{P}^-)\sigma_L$$



$$e^+e^- o W^+W^-$$

Production at linear colliders would be first time $\,W^+W^-\,$ production measured with polarized beams

$$\sigma = \frac{1}{4}(1 - \mathcal{P}^+)(1 + \mathcal{P}^-)\sigma_R + \frac{1}{4}(1 + \mathcal{P}^+)(1 - \mathcal{P}^-)\sigma_L$$

Polarization increases sensitivity to aTGC's

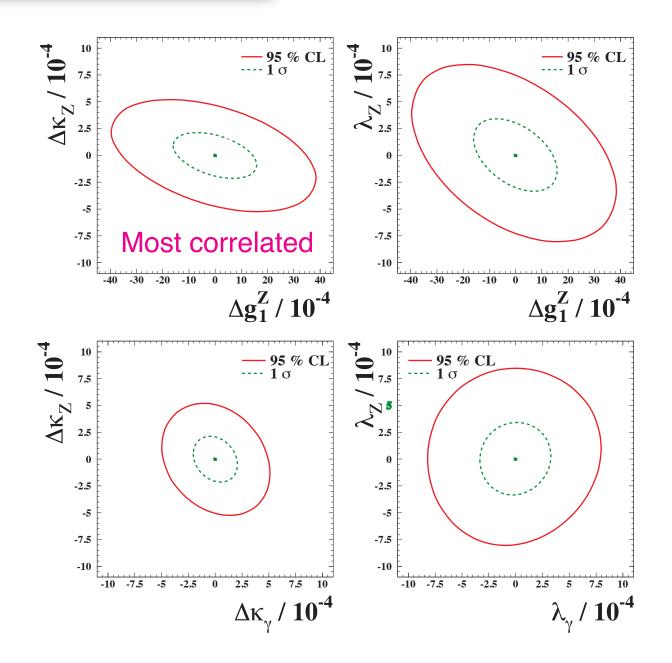
$$e^+e^- \rightarrow W^+W^-$$

- Usual multidimensional fits to W-production angles and angles of W-decay products, different polarizations
- W's boosted, better resolution on W-production angle than LEP2
- Use all three decay topologies:

$$W \to qq', W \to qq'$$

$$W \to qq', W \to \ell\nu$$

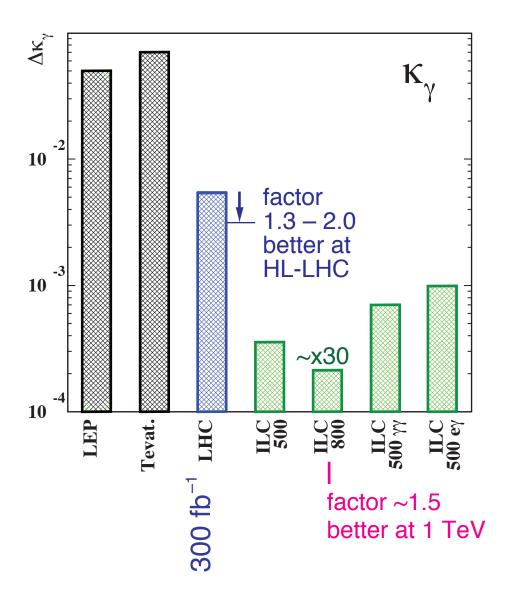
$$W \to \ell\nu, W \to \ell\nu$$

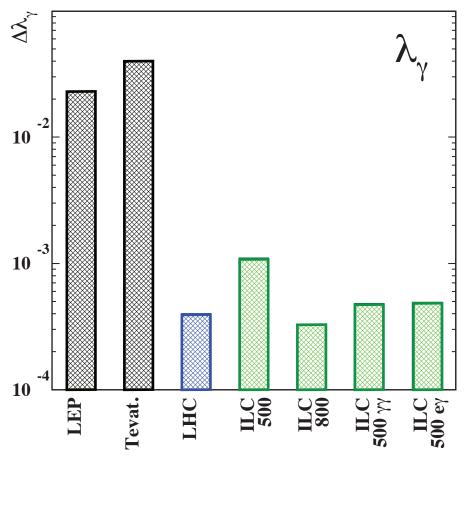

Most sensitive select with good efficiency, rather low background

$\pm 1\sigma$ uncertainties to per mille level or better

coupling	error $\times 10^{-4}$				
	$\sqrt{s} = 500 \text{ GeV}$	$\sqrt{s} = 800 \text{ GeV}$			
C,P-conse	C,P-conserving, $SU(2) \times U(1)$ rel				
Δg_1^{Z}	2.8	1.8			
$\Delta \kappa_{\gamma}$	3.1	1.9			
λγ	4.3	2.6			
C,P-conse	rving, no relations				
Δg_1^{Z}	15.5	12.6			
$\Delta \kappa_{\gamma}^{-}$	3.3	1.9			
λγ	5.9	3.3			
$\Delta \kappa_{ m Z}$	3.2	1.9			
$\lambda_{ m Z}$	6.7	3.0			
not C or F	conserving:				
g_5^Z	16.5	14.4			
g_4^{Z}	45.9	18.3			
$egin{array}{c} g_5^Z \ g_4^Z \ & \widetilde{\kappa}_Z \end{array}$	39.0	14.3			
$ ilde{\lambda}_{ m Z}$	7.5	3.0			

$$\mathcal{L} = 500 \text{ fb}^{-1}$$
 1000 fb^{-1}
 $\mathcal{P}^{-} = 80\%, \mathcal{P}^{+} = 60\%$

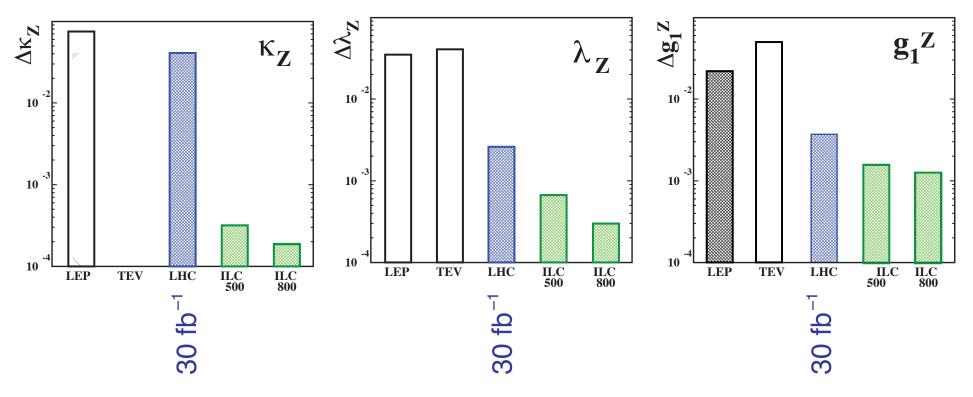

$$e^+e^- \rightarrow W^+W^-$$



aTGC's in Context

...from $e^+e^- \rightarrow W^+W^-$

large improvement in precision in many TGC's



aTGC's in Context

...from
$$e^+e^- \rightarrow W^+W^-$$

• all precisions improve, many by large factors

From hep-ph/0410364, updated

TLEP?

FCC-ee: Future Circular ee Collider

- At lower energies, TLEP would have insane luminosities
- ILC at Z peak has "GigaZ" program
 TLEP at Z peak has "TeraZ" program
- $2 \times 10^8~W^+W^-$ pairs at threshold (~1/10) and above
- "...measurements to be performed by TLEP at this centre-of-mass energy need to be thoroughly reviewed by the starting design study"

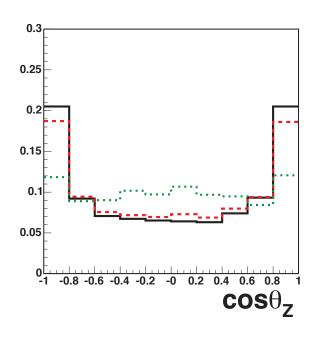
Triple VB Production

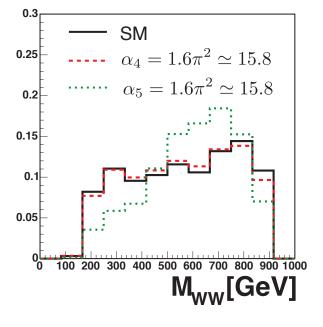
...for quartic gauge couplings

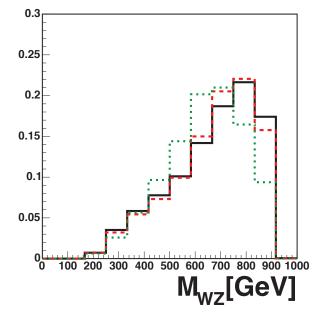
$$\sigma(e^+e^- \to VVV) \propto \frac{1}{s}$$

 $\sigma(e^+e^- \to VVV) \propto \frac{1}{s} \quad \mbox{Limits usefulness to subprocess energies in the lower range where cross section}$ of fusion process still small

$$\sigma_{\rm VBS}(e^+e^- \to \nu\bar{\nu}W^+W^-) \propto \log(s)$$

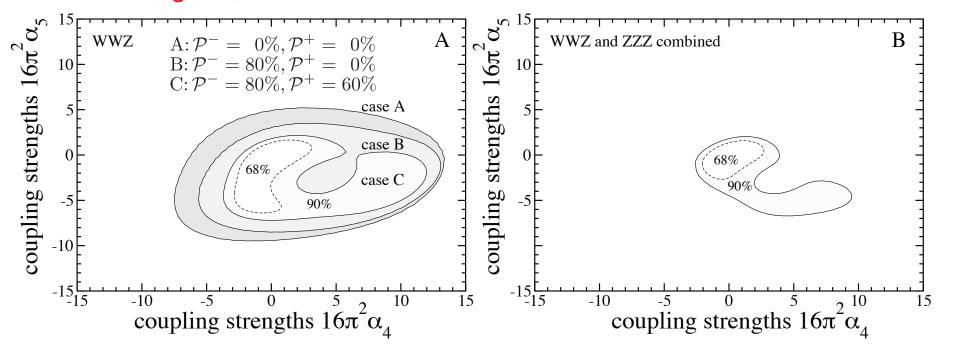

$$\begin{array}{c} e^+e^- \to ZZZ \\ & \longrightarrow WW \end{array} \begin{array}{c} ZH \\ & \longrightarrow WW \end{array} \begin{array}{c} \text{Present in spectrum} \\ & \longrightarrow ZZ \end{array}$$


 $\rightarrow WW\gamma$ Complementary (and present at lower energies)


Triple VB Production

...for quartic gauge couplings

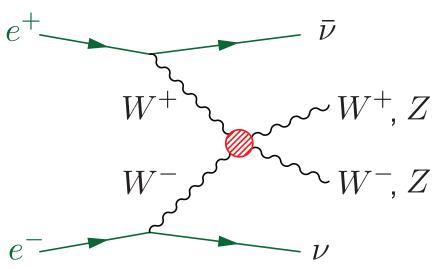
$$e^+e^- o ZZZ$$
 few SM backgrounds $o WWZ$ dominant background is $t\bar t$ (reduce using e_R^-)



$$e^+e^- \to WWZ$$
 1 TeV, $\mathcal{P}^- = 80\%, \mathcal{P}^+ = 60\%, \mathcal{L} = 1000 \text{ fb}^{-1}$

Triple VB Production

...for quartic gauge couplings


- constraints on aQGC's: $\alpha_4 \alpha_5$ in EW effective chiral Lagrangian (see backup slides)
- not great, factor ~30 worse than LHC

			WWZ			best
		no pol.	e ⁻ pol.	both pol.	no pol.	
$16\pi^2\Delta\alpha_4$	σ^+	9.79	4.21	1.90	3.94	1.78
	σ^-	- 4.40	- 3.34	-1.71	- 3.53	-1.48
$16\pi^2\Delta\alpha_5$	σ^+	3.05	2.69	1.17	3.94	1.14
	σ-	-7.10	-6.40	-2.19	- 3.53	- 1.64

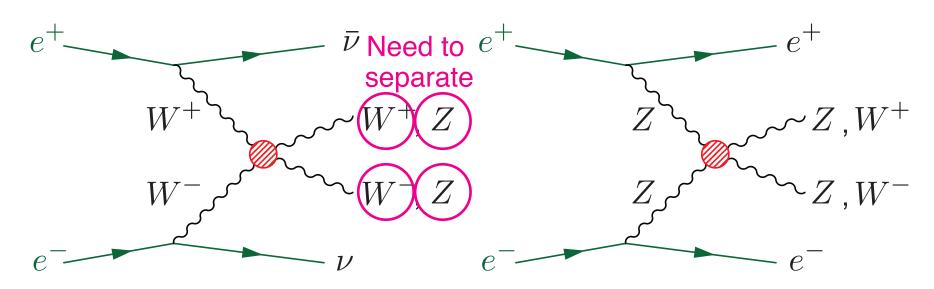
...for quartic gauge couplings

any better?

 e^+ Z Z W^+ Z $W^ e^-$

 neutrinos instead of forward jets, large missing invariant mass ullet can scatter $oldsymbol{\gamma}$'s instead of Z's

- in contrast to LHC, know the initial state in the scattering subprocess
- c.f. 1 TeV ILC for subprocess energy to 14 TeV LHC

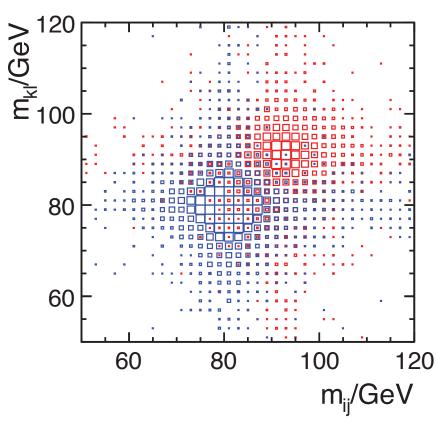

$$p o q \ q o W/Z$$

Falls ~short, higher energies better

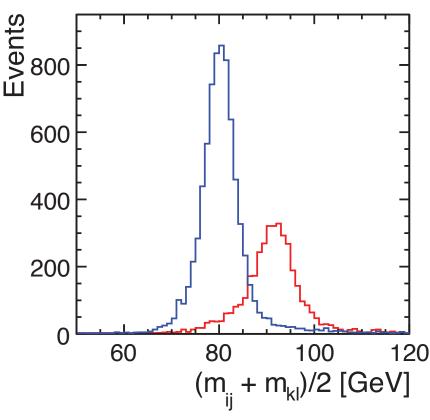
allows for an effective subprocess energy up to about 2 TeV 20

...for quartic gauge couplings

• any better?



 polarization can change cross sections by up to factor 4 ullet can scatter $oldsymbol{\gamma}$'s instead of Z's


...for quartic gauge couplings

• final state: $e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q' \bar{q}'$

, "best" jet-jet combinations

$$u_e \bar{\nu}_e WW \qquad \qquad \nu_e \bar{\nu}_e ZZ$$
 $(W^+W^- \to W^+W^-) (W^+W^- \to ZZ)$

Hadronic *WIZ* separation is calorimeter benchmark for ILC detectors (this is the ILD detector)

...for quartic gauge couplings

Process	Subprocess	σ [fb]
$e^{+}e^{-} \rightarrow \nu_{e}\bar{\nu}_{e}q\bar{q}q\bar{q}$ $e^{+}e^{-} \rightarrow \nu_{e}\bar{\nu}_{e}q\bar{q}q\bar{q}$	$ \begin{array}{c} W^+W^- \to W^+W^- \\ W^+W^- \to ZZ \end{array} $	23.19 7.624
$e^+e^- \to \nu\bar{\nu}q\bar{q}q\bar{q}$	$V \to VVV$	9.344
$e^{+}e^{-} \rightarrow \nu e q \bar{q} q \bar{q}$ $e^{+}e^{-} \rightarrow e^{+}e^{-} q \bar{q} q \bar{q}$ $e^{+}e^{-} \rightarrow e^{+}e^{-} q \bar{q} q \bar{q}$	$WZ \to WZ$ $ZZ \to ZZ$ $ZZ \to W^+W^-$	132.3 2.09 414.
$e^+e^- \to b\bar{b}X$	$e^+e^- \to t\bar{t}$	331.768
$e^+e^- \to q\bar{q}q\bar{q}$ $e^+e^- \to q\bar{q}q\bar{q}$	$e^+e^- \to W^+W^-$ $e^+e^- \to ZZ$	3560.108 173.221
$e^{+}e^{-} \to e\nu q\bar{q}$ $e^{+}e^{-} \to e^{+}e^{-}q\bar{q}$	$e^{+}e^{-} \rightarrow e\nu W$ $e^{+}e^{-} \rightarrow e^{+}e^{-}Z$	279.588 134.935
$e^+e^- \to X$	$e^+e^- \to q\bar{q}$	1637.405

typical cross sections for signals and backgrounds, 1 TeV

$$\mathcal{P}^{-} = 80\%, \mathcal{P}^{+} = 40\%$$
 23

...for quartic gauge couplings

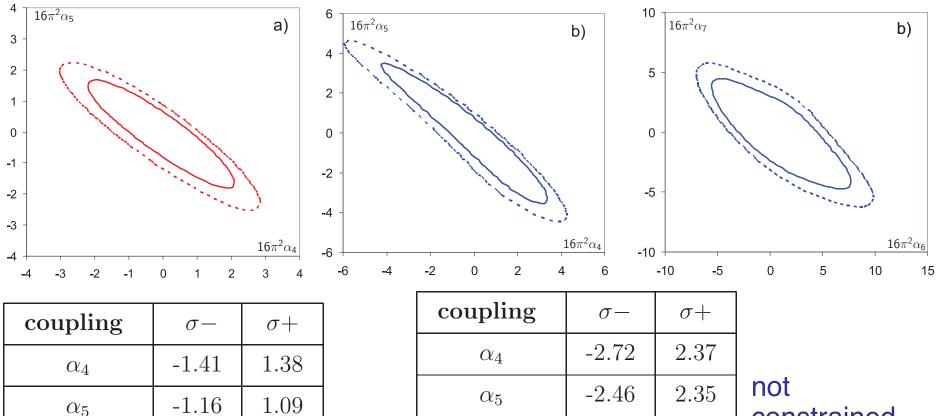
sensitivities to EW effective chiral Lagrangian aQGC's

$e^+e^- \to$	$e^-e^- \rightarrow$	α_4	α_5	α_6	α_7	α_{10}
$W^+W^- \to W^+W^-$	$W^-W^- \to W^-W^-$	+	+	_	ı	-
$W^+W^- \to ZZ$		+	+	+	+	-
$W^{\pm}Z \to W^{\pm}Z$	$W^-Z \to W^-Z$	+	+	+	+	-
ZZ o ZZ	ZZ o ZZ	+	+	+	+	+

Yes, could do electron-electron at LC

• e.g., ILD detector, full simulation,

1 TeV,
$$1000 \text{ fb}^{-1}$$
, $\mathcal{P}^{-} = -80\%$, $\mathcal{P}^{+} = 30\%$


$$-1.38 < \alpha_4 < +1.10$$

 $-0.92 < \alpha_5 < +0.77$ (at 90% CL)

arXiv:1006.3396 [hep-ex]

...for quartic gauge couplings

similar TESLA analysis (fast simulation)

hep-ph/0604048

SU(2) custodial symmetry constrained

coupling	$\sigma-$	$\sigma+$
α_4	-2.72	2.37
$lpha_5$	-2.46	2.35
α_6	-3.93	5.53
$lpha_7$	-3.22	3.31
α_{10}	-5.55	4.55

constrained

...for quartic gauge couplings

comparison to HL-LHC?

LC constraints significantly weaker by large factors:

parameter	$300 \; {\rm fb^{-1}}$	1 ab^{-1}	3 ab^{-1}
α_4	0.066	0.025	0.016

ATLAS study, CERN preprint ATL-PHYS-PUB-2012-005, http://cds.cern.ch/record/1496527.

...for quartic gauge couplings

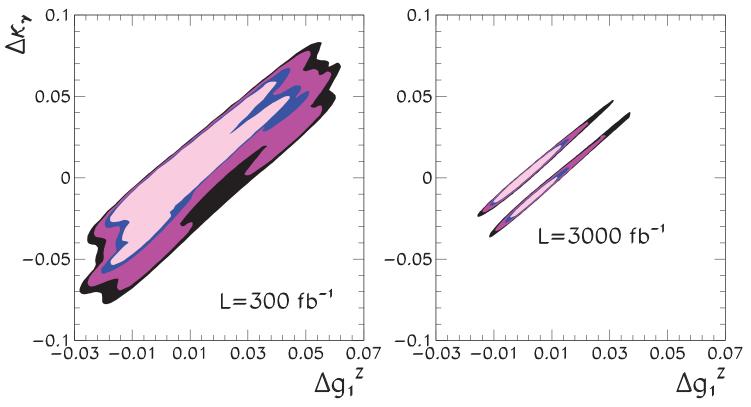
• Compare via limits on mass M of a broad resonance in simplified models obtained from limits on α_4 (larger limit better)

Type of resonance	LHC $300 \; {\rm fb^{-1}}$		LHC 3000 fb^{-1}	
Type of resonance	5σ	95% CL	5σ	95% CL
scalar ϕ	1.8 TeV	2.0 TeV	2.2 TeV	3.3 TeV
vector ρ	2.3 TeV	2.6 TeV	2.9 TeV	4.4 TeV
tensor f	3.2 TeV	3.5 TeV	3.9 TeV	6.0 TeV

Best: derived from LHC $W^\pm W^\pm$ channel with less background

Type of resonance	95% CL
scalar ϕ	1.64 TeV
vector ρ	2.09 TeV
tensor f	2.76 TeV

ILC translated limits

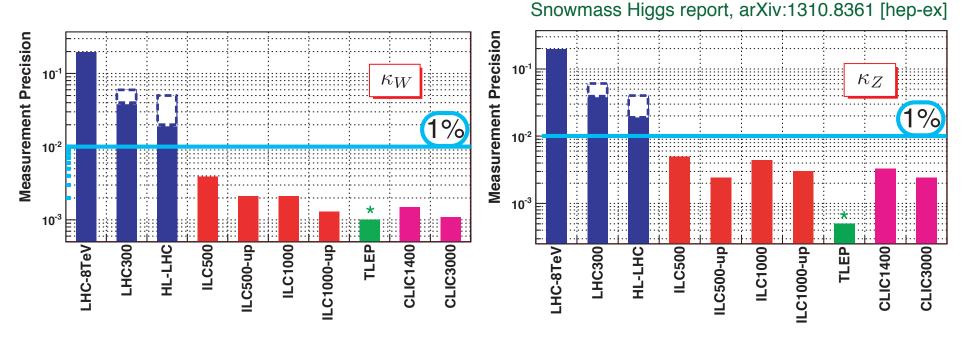

95% CL limits

Type of resonance	LHC $300 \; {\rm fb^{-1}}$	LHC 3000 fb^{-1}
scalar ϕ	0.9 TeV	1.3 TeV
vector ρ	1.2 TeV	$1.7 \mathrm{TeV}$
tensor f	$1.6 \mathrm{TeV}$	2.3 TeV

Derived from LHC W^+W^- channel with significant background

TGC's from global fit to Higgs data

 Constraints due to analysis of projected Higgs properties data from LHC and HL-LHC, could then combine with direct measurements



90%, 95%, 99%, 3σ allowed regions

arXiv:1207.1344v3 [hep-ph] extended in Snowmass EW report

TGC's from global fit to Higgs data

 What if analysis done using as input projected precisions on Higgs properties from linear collider options? Include aQGC's? e.g.:

• Precision on deviations of Higgs couplings: g_{HWW}, g_{HZZ}

Inquiries sent to authors – interested

Summary/Conclusions

- LC options can bring significant new insights to multi-boson interactions
- Anomalous triple gauge couplings, induced by dim-6 operators, are significantly better probed by high-energy linear collider options
- Anomalous quartic gauge couplings, induced by dim-8 operators, are significantly better probed (by 1-2 orders of magnitude) by the LHC, due to the stronger growth of the anomalous cross section with energy
- Global fits with Higgs properties are useful
- Complementarities abound!

EW effective chiral Lagrangian

The deviations of the couplings from the SM values are expressed in terms of the α_i parameters as

$$\Delta g_1^{\gamma} = 0 \qquad \Delta \kappa^{\gamma} = g^2(\alpha_2 - \alpha_1) + g^2\alpha_3 + g^2(\alpha_9 - \alpha_8)$$
 (4.5)

$$\Delta g_1^Z = \delta_Z + \frac{g^2}{c_w^2} \alpha_3 \qquad \Delta \kappa^Z = \delta_Z - g^2(\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2(\alpha_9 - \alpha_8)$$
 (4.6)

and

$$\lambda^{\gamma} = -\frac{g^2}{2} \left(\alpha_1^{\lambda} + \alpha_2^{\lambda} \right) \qquad \qquad \lambda^{Z} = -\frac{g^2}{2} \left(\alpha_1^{\lambda} - \frac{s_w^2}{c_w^2} \alpha_2^{\lambda} \right) \tag{4.7}$$

Deviations from these SM values in the quartic couplings are introduced through the corrections induced by the α_i to the couplings that preserve custodial SU(2) symmetry,

$$\Delta g_1^{\gamma\gamma} = \Delta g_2^{\gamma\gamma} = 0 \qquad \Delta g_1^{\gamma Z} = \frac{g^p p}{c_w^2 - s_w^2} \alpha_1 + \frac{g^2}{c_w^2} \alpha_3 \qquad (4.9a)$$

$$\Delta g_1^{ZZ} = 2\Delta g_1^{\gamma Z} + \frac{g^2}{c_w^4} \alpha_4 \qquad \qquad \Delta g_2^{ZZ} = 2\Delta g_1^{\gamma Z} - \frac{g^2}{c_w^4} \alpha_5$$
 (4.9b)

$$\Delta g_1^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + g^2 \alpha_4 \qquad \Delta g_2^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} - g^2 (\alpha_4 + 2\alpha_5)$$
 (4.9c)

$$h^{ZZ} = g^2 \left(\alpha_4 + \alpha_5\right). \tag{4.9d}$$

EW effective chiral Lagrangian

Propagator/oblique
$$\mathcal{L}_0' = \frac{v^2}{4}\operatorname{tr}\left\{ TV_{\mu} \right\}\operatorname{tr}\left\{ TV^{\mu} \right\}$$
Propagator/oblique $\mathcal{L}_1 = gg'\operatorname{tr}\left\{ B_{\mu\nu}W^{\mu\nu} \right\}$
aTGC $\mathcal{L}_2 = ig'\operatorname{tr}\left\{ B_{\mu\nu}[V^{\mu},V^{\nu}] \right\}$
aTGC $\mathcal{L}_3 = ig\operatorname{tr}\left\{ W_{\mu\nu}[V^{\mu},V^{\nu}] \right\}$
aQGC $\mathcal{L}_4 = \left(\operatorname{tr}\left\{ V_{\mu}V_{\nu} \right\} \right)^2$
aQGC $\mathcal{L}_5 = \left(\operatorname{tr}\left\{ V_{\mu}V^{\mu} \right\} \right)^2$
aQGC $\mathcal{L}_6 = \operatorname{tr}\left\{ V_{\mu}V^{\nu} \right\}\operatorname{tr}\left\{ TV^{\mu} \right\}\operatorname{tr}\left\{ TV^{\nu} \right\}$
aQGC $\mathcal{L}_7 = \operatorname{tr}\left\{ V_{\mu}V^{\mu} \right\}\left(\operatorname{tr}\left\{ TV_{\nu} \right\} \right)^2$
Propagator/oblique $\mathcal{L}_8 = \frac{1}{4}g^2\left(\operatorname{tr}\left\{ TW_{\mu\nu} \right\} \right)^2$
aTGC $\mathcal{L}_9 = \frac{1}{2}ig\operatorname{tr}\left\{ TW_{\mu\nu} \right\}\operatorname{tr}\left\{ T[V^{\mu},V^{\nu}] \right\}$
aQGC $\mathcal{L}_{10} = \frac{1}{2}\left(\operatorname{tr}\left\{ TV_{\mu} \right\} \right)^2\left(\operatorname{tr}\left\{ TV_{\nu} \right\} \right)^2$